Enhanced Throughput for Electrokinetic Manipulation of Particles and Cells in a Stacked Microfluidic Device
نویسندگان
چکیده
Electrokinetic manipulation refers to the control of particle and cell motions using an electric field. It is an efficient technique for microfluidic applications with the ease of operation and integration. It, however, suffers from an intrinsic drawback of low throughput due to the linear dependence of the typically very low fluid permittivity. We demonstrate in this work a significantly enhanced throughput for electrokinetic manipulation of particles and cells by the use of multiple parallel microchannels in a two-layer stacked microfluidic device. The fabrication of this device is simple without the need of a precise alignment of the two layers. The number of layers and the number of microchannels in each layer can thus be further increased for a potentially high throughput electrokinetic particle and cell manipulations.
منابع مشابه
High-throughput particle manipulation by hydrodynamic, electrokinetic, and dielectrophoretic effects in an integrated microfluidic chip.
Integrating different steps on a chip for cell manipulations and sample preparation is of foremost importance to fully take advantage of microfluidic possibilities, and therefore make tests faster, cheaper and more accurate. We demonstrated particle manipulation in an integrated microfluidic device by applying hydrodynamic, electroosmotic (EO), electrophoretic (EP), and dielectrophoretic (DEP) ...
متن کاملFluorescent Contrast agent Based on Graphene Quantum Dots Decorated Mesoporous Silica Nanoparticles for Detecting and Sorting Cancer Cells
Background and Objectives: The inability of classic fluorescence-activated cell sorting to single cancer cell sorting is one of the most significant drawbacks of this method. The sorting of cancer cells in microdroplets significantly influences our ability to analyze cancer cell proteins. Material and Methods: We adapted a developed microfluidic device as a 3D in vitro model to sorted MCF-7 c...
متن کاملParallel Optical Manipulation of Single Cells , Micro - and Nano - particles on Optoelectronic Devices
The ability to manipulate biological cells and micrometer-scale particles plays an important role in many biological and colloidal science applications. However, conventional manipulation techniques, such as optical tweezers, electrokinetic forces (electrophoresis, dielectrophoresis (DEP), and traveling-wave dielectrophoresis), magnetic tweezers, acoustic traps, and hydrodynamic flows, cannot a...
متن کاملEnhanced optical absorption in organic solar cells using metal nano particles
In this study, for increasing absorption of the active layer in bulk hetero junction (BHJ) organic solar cells (OSCs) we used surface Plasmon effects of metal nano particles (MNPs). We embedded the MNPs inside the active layer and studied the device structure. For shown the results we investigated the model of our structure with Finite Difference Time Domain (FDTD) numerical method and achieved...
متن کاملImage-guided Precision Manipulation of Cells and Nanoparticles in Microfluidics
Title of Document: IMAGE-GUIDED PRECISION MANIPULATION OF CELLS AND NANOPARTICLES IN MICROFLUIDICS Zachary Cummins, Doctor of Philosophy, 2016 Directed By: Professor Benjamin Shapiro, Fischell Department of Bioengineering Manipulation of single cells and particles is important to biology and nanotechnology. Our electrokinetic (EK) tweezers manipulate objects in simple microfluidic devices using...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Micromachines
دوره 7 شماره
صفحات -
تاریخ انتشار 2016